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Abstract
In the last decades, renormalization group (RG) ideas have been applied to
describe universal properties of different routes to chaos (quasi-periodic, period
doubling or tripling, Siegel disc boundaries, etc). Each of the RG theories leads
to universal scaling exponents which are related to the action of certain RG
operators. The goal of this announcement is to show that there is a principle that
organizes many of these scaling exponents. We give numerical evidence that
the exponents of different routes to chaos satisfy approximately some arithmetic
relations. These relations are determined by combinatorial properties of the
route and become exact in an appropriate limit.

PACS numbers: 05.45.Df, 05.10.−a, 05.10.Cc

1. Introduction

One of the most striking discoveries in dynamical systems in the last decades has been the
existence of scaling relations and self-similarity in the transition to chaotic behaviour. By now
there is a plethora of transitions each with its own exponents. Many scaling relations have
been explained by renormalization group (RG) theory [1]. Our goal here is to report on some
organization among the scaling exponents of different transitions.

In many transitions, one can associate a combinatorics to the maps. For example, in
unimodal maps we can prescribe the kneading sequence or in quasi-periodic maps the rotation
number. There are natural operations among these combinatorics. For example, one can
use the *-operation among finite kneading sequences [2] or the juxtaposition among finite
continued fraction expansions.

If we fix one of these combinatorics, we can consider successions of bifurcations obtained
by selecting mappings whose combinatorics is a power of the operation. For example, the
standard period doubling corresponds to considering (R∗)n and the usual quasi-periodic route
for the golden mean to take continued fractions Fn/Fn+1 = [1, . . . , 1]. If we choose other
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sequence to raise to increasing powers, we obtain different routes to chaos, which are often
found to have scaling properties.

In this short paper, we formulate the Principle of Approximate Combination of Scaling
Exponents (PACSE for short). PACSE asserts that the scaling exponents of different transitions
are related. PACSE can be formulated briefly as follows:

(A) If the combinatorics of two routes to chaos are joined by the natural operation, the scaling
exponents of the joint combinatorics are approximated by the product of the exponents of
the two original routes.

(B) The approximate product rule in (A) becomes exact if the combination is repeated infinitely
many times.

(C) The convergence in part (B) is exponential.

In sections 2–4, we make explicit the meaning of the combinatorics and their combination
rules in some examples. We also present numerical evidence for the points (A), (B) and (C).
In section 5, we indicate some theoretical ideas why PACSE should be true.

2. PACSE for critical circle maps

2.1. Real- and parameter-space scaling exponents

We first describe the principle of approximate combination in the case of quasi-periodic route
to chaos.

In [3–6], there is a description of phenomena in families of maps with a cubic critical
point and rotation number equal to the golden mean, σG := 1

2 (
√

5 − 1).
In this paper, we consider more general quasi-periodic transitions. The different quasi-

periodic transitions are characterized by an irrational number ρ ∈ [0, 1) called the rotation
number. The combinatorics of the transition is given by the continued fraction expansion
(CFE) of ρ [7]. We write 〈a1, a2, . . .〉 = 1/(a1 + 1/(a2 + · · ·)). We consider numbers whose
CFE is eventually periodic. Given finite sequences of natural numbers A = (a1, a2, . . . , ap)

and B = (b1, b2, . . . , bq), we define their concatenation AB = (a1, a2, . . . , ap, b1, b2, . . . , bq)

and denote repeated concatenations by exponents.
We will denote by 〈AB∞〉 = 〈ABB . . .〉 the irrational number whose CFE is the

concatenation of A and infinitely many copies of B. To such a number, we can associate
a sequence of rational numbers which converge to it, Pn

Qn
= 〈ABn〉.

As prototypes of circle maps we consider the two-parameter family

fω,β(x) = [x + ω + βg(x)] mod 1, (1)

where g(x) is a smooth periodic function of period 1, i.e., sin 2πx. If f ′(x) becomes 0 at one
point c (and, therefore, f −1 is not differentiable), we say that f is a critical map and call c the
critical point of f . Below f n(x) will stand for the nth iteration, i.e., to the map f applied n
times: f n(x) = f ◦ f ◦ · · · ◦ f (x).

For many rotation numbers of the form 〈AB∞〉 the following behaviour has been observed.

(a) Parameter-space scaling. For a fixed value of the nonlinearity parameter β in (1), let
In(β) be a phase locking interval, i.e., the interval of values of the parameter ω for which
the circle map fω,β has rational rotation number Pn

Qn
= 〈ABn〉. Then, the lengths of the

phase locking intervals behave with n as

|In(β)| ≈ Cδ−n
B ,

where δB is a universal number, that is, a number that depends only on B (but not on the
head A of CFE 〈AB∞〉) and on the order of the critical point c, but is otherwise independent
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of the families fω,β (when the families range over a small enough neighbourhood). We
will indicate the order of the critical point c with a superscript on δB.

(b) Real-space scaling (scaling of recurrences). Let f be a critical circle map with critical
point c and rotation number 〈AB∞〉. Then, the iterates f Qn(c) approach c geometrically:

|f Qn(c) − c| ≈ Cα−n
B ,

where αB is a universal number (in the same sense as for δB). A superscript will denote
the order of criticality.

2.2. Formulation of PACSE for critical circle maps

For circle maps, PACSE is expressed as follows:

(i) For a fixed order of criticality of c, there exist constants C1 and C2 such that

C1 � δAB

δAδB
� C2, C1 � αAB

αAαB
� C2, (2)

where C1 and C2 depend only on max(a1, . . . , ap, b1, . . . , bq).
(ii) For a fixed order of criticality of c and fixed A and B, the following limits exist:

lim
k→∞

δAkB

(δA)k δB

, lim
k→∞

αAkB

(αA)k αB

. (3)

(iii) For a fixed order of criticality of c and fixed A and B, the ratios Dk = δAkB

(δA)kδB
and

Ak = αAkB

(αA)kαB
approach their limiting values D∞ and A∞ exponentially:

|Dk − D∞| ≈ Cξk, |Ak − A∞| ≈ Cηk, (4)

for some constants ξ and η.

The bounds (2) are quite surprising because αA and especially δA are huge when the length
of A is large.

2.3. Evidence for PACSE for critical circle maps

We studied the following families of circle maps:

• The ‘standard’ cubic critical (C) family
(
0 � K < 4

3

)

f C
K,ω(x) =

[
x + ω − 1

2π

(
K sin 2πx +

1 − K

2
sin 4πx

)]
mod 1,

where the coefficients are chosen in such a way that for every K in the interval(
0, 4

3

)
, f C

K,ω(x) = ω + 2π2(4−3K)

3 x3 + O(x5).
• The ‘standard’ quintic critical (Q) family

(
1
2 � K < 3

2

)

f
Q
K,ω(x) =

[
x + ω − 1

2π

(
K sin 2πx +

9 − 8K

10
sin 4πx +

3K − 4

15
sin 6πx

)]
mod 1,

where the coefficients are chosen in such a way that for every K in the interval(
1
2 , 3

2

)
, f

Q
K,ω(x) = ω + 8π4(3−2K)

5 x5 + O(x7).
• The maps

f (x) = x + ω − b

2π

sin 2πx

a − cos 2πx
(5)

with (a, b) = (2, 1), for which f is cubic critical
[
f (x) = ω + 8

3π2x3 + O(x5)
]
; and

(a, b) = (−2,−3), for which f is quintic critical
[
f (x) = ω + 4

45π4x5 + O(x7)
]
.
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Table 1. Scaling exponents of C and Q maps with rotation numbers 〈B∞〉, B = (1k2), and of C
maps with rotation numbers 〈B∞〉, B = (1k3).

Cubic critical, B = (1k2) Cubic critical, B = (1k3) Quintic critical, B = (1k2)

k δC
1k2

αC
1k2

δC
1k3

αC
1k3

δ
Q
1k2

α
Q
1k2

0 6.799 225 16 1.586 826 70 13.760 284 1.855 060 7.7912 246 1.379 1501
1 17.669 052 76 1.969 1355 31.623 877 2.174 11 21.573 320 1.5985
2 52.044 49 2.590 589 98.324 67 2.945 324 68.620 816 1.9392
3 145.425 152 3.308 635 269.104 3.710 01 205.43 2.2997
4 414.515 61 4.283 01 774.04 4.836 423 629.5 2.7536
5 1171.7123 5.5067 2179.3 6.196 30 1910.6 3.2836
6 3323.73 7.1039 6193 8.0082 5820 3.9216
7 9413.7 9.148 60 17 530 10.3035 17 710 4.6815
8 26 681 11.7923 49 700±20 13.287 53 500 5.590
9 75 590 15.1929 140 800 17.117 160 000 6.677

10 214 000 19.579 400 000±20000 22.061 500 000 7.970
11 607 900 25.230 ? 28.428 1600 000 9.53

Table 2. Ratios of scaling exponents as in (2) for the data from table 1.

Cubic critical, B = (1k2) Cubic critical, B = (1k3) Quintic critical, B = (1k2)

k

δC
1k2

(δC
1 )kδC

2

αC
1k2

(αC
1 )kαC

2

δC
1k3

(δC
1 )kδC

3

αC
1k3

(αC
1 )kαC

3

δ
Q
1k2

(δ
Q
1 )kδ

Q
2

α
Q
1k2

(α
Q
1 )kα

Q
2

1 0.917 093 6095 0.963 022 77 0.811 049 83 0.909 524 0.909 819 84 0.970 84
2 0.953 3118 0.983 2182 0.889 9277 0.956 2160 0.950 917 85 0.986 52
3 0.940 068 655 0.974 5199 0.859 552 0.934 735 0.935 39 0.979 95
4 0.945 628 95 0.978 997 0.872 52 0.945 6449 0.9418 0.982 83
5 0.943 323 56 0.976 82 0.866 94 0.940 214 0.939 26 0.981 70
6 0.944 333 0.977 93 0.8694 0.943 02 0.9401 0.982 06
7 0.943 89 0.977 369 0.8685 0.941 586 0.9300 0.981 99
8 0.944 11 0.977 671 0.869 0.942 31 0.924 0.9822
9 0.9439 0.977 519 0.869 0.942 07 0.93 0.9827

10 0.943 0.977 61 0.87 0.942 26 0.94 0.9825
11 0.945 0.977 65 ? 0.942 29 1.0 0.984

Since the maps (5) with a fixed order of critical point do not contain any free parameter,
we only computed the α exponents. This was to reassure us that the results apply to functions
with infinitely many harmonics.

For more detail on algorithms for computing the critical values, we refer to [8], which
only considered the case of the golden mean. Table 1 presents our numerical results for the
scaling exponents δ and α for the cases of cubic and quintic critical maps. In the quintic
critical case we studied rotation numbers of the form 〈(1k2)∞〉, while in the cubic critical
case we did it for 〈(1k2)∞〉 and 〈(1k3)∞〉. The errors do not exceed 2 in the last digit, unless
otherwise specified. When we did not detect good enough convergence we just put ‘?’.

In table 2, we present the ratios in (2) and (3), keeping only the number of digits
such that the error does not exceed 2 in the last digit. In the computations we used the
values of the scaling exponents δ1 and α1 for rotation number golden mean, 〈1∞〉: δC

1 =
2.833 610 6559, αC

1 = 1.288 574 56, δ
Q
1 = 3.043 377 74, α

Q
1 = 1.193 857.



Fast Track Communication F431

1 2 3 4 5 6 7 8 9
1e-05

0.0001

0.001

0.01

1 2 3 4 5 6 7 8           9 
1e-05

0.0001

0.001

0.01

Figure 1. Left: log-linear plot of the differences |δC
1k2

/[(δC
1 )kδC

2 ]−0.944|; right: log-linear plot of

the differences |[αC
1k2

/[(αC
1 )kαC

2 ] − 0.9776| (thin lines), |[αC
1k3

/(αC
1 )kαC

3 ] − 0.9422| (thick lines),

|[αQ
1k2

/(α
Q
1 )kα

Q
2 ] − 0.9822| (dashed lines) versus k for k = 1, 2, . . . , 9.

As a numerical confirmation of the exponential convergence of the ratios Dk and Ak

(see (4)), we present in figure 1 the differences |Dk − D∞| and |Ak − A∞| versus k. Note that
for large values of k the computation is very sensitive to numerical errors.

We also studied numerically the scaling exponents for maps with rotation numbers that are
eventually periodic (like 〈31∞〉, 〈321∞〉, 〈32(12)∞〉) and found that the values of the scaling
exponents depend only on the tail of the continued fraction expansions, as predicted by the
general theory.

3. PACSE for area-preserving twist maps of the cylinder

We considered the standard (Taylor–Chirikov) family of area-preserving twist maps,

(x ′, y ′) =
(

x + y ′, y +
K

2π
sin 2πx

)
.

We refer to [9] for background on the standard maps and the algorithms used, although only
one fixed rotation number is sudied in [9]. RG theory of such maps is developed in [6, 10–12].

Given a rotation number 〈B∞〉, the critical events we studied are the existence of tangencies
between the stable and unstable manifolds of periodic orbits with rotation number 〈Bn〉 and
〈Bn+1〉. Denoting the critical parameter values by Kn, and the area of the lobes enclosed by
the tangency by Ln, we observed the following scalings:

|Kn − K∞| ≈ C
−n
B , Ln ≈ Cλ−n

B ,

where 
B and λB are universal numbers depending only on B. In table 3, we summarize our
numerical results.

4. Other contexts for PACSE

In this section, we describe some other contexts for PACSE, making precise the meaning of
combinatorics. We have some numerical data, but will not present it to keep the announcement
short.
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Table 3. Scaling exponents of critical area-preserving twist maps with rotation numbers 〈(21k)∞〉;
we used that 
1 = 1.628 02,
2 = 2.4569, λ1 = 4.339 143, λ2 = 14.60.

k 
21k λ21k


21k


2(
1)k

λ21k

λ2(λ1)k

1 3.778 59.548 0.944 0.939
2 6.298 284.53 0.967 1.035
3 10.168 1141.44 0.959 0.956

4.1. Unimodal maps of the interval

Renormalization for unimodal maps is analogous to the renormalization for circle maps. The
kneading sequences play a role similar to the role of the rotation numbers. An analogue of
concatenation of continued fractions is the *-operation of [2, 13–15]. For a given kneading
sequence K and a family fλ, it is standard to check for the parameters λn characterized by the
critical point being periodic and having an itinerary given by K∗n. In this case, one can obtain
parameter- and real-space scaling exponents by

|λn − λ∞| ≈ Cδ−n
K , f

|K∗n|
λn+1

(0) ≈ Cα−n
K .

Again, δK, αK are universal numbers which depend on K. If K = K1 ∗ K2, PACSE predicts that

δK ≈ δK1δK2 , αK ≈ αK1αK2 .

4.2. Boundaries of Siegel discs

We recall that Siegel discs are the domains of stability around the origin of maps of the complex
plane of the form f (z) = az + O(z2) where a = exp(2π i〈B∞〉).

Siegel discs have been intensively studied from the renormalization point of view since
[16, 17]. It has been found that, in many cases, the boundaries of the Siegel discs contain
a critical point c. The renormalization theories are very similar to that of rotations since
multiplication by a is just a rotation, so that the combinatorics are the same as those of the circle
maps. We can define real-space scaling exponents by f Qn(c)−c ≈ Cα−n

B and parameter-space
scaling by searching for an such that f Qn(c) = c and verifying an − a ≈ Cδ−n

B , where again
αB and δB are universal but depend on B. In contrast with the other cases mentioned above,
the scaling exponents are complex numbers. Nevertheless, for each level of renormalization,
the scaling exponents conjugate.

We have that

|δAB| ≈ |δA||δB|, |αAB| ≈ |αA||αB|.

4.3. Rigid rotations and smooth diffeomorphisms of the circle

For rigid rotations of the circle PACSE follows from a detailed study [18] of the Gauss map
[7]. For circle diffeomorphisms PACSE for real-space scalings follows from the fact that the
map can be smoothly conjugated to a rigid rotation [19, 20].

4.4. p-Renormalization

In [21], the authors considered some special kneading sequences K = RLLL . . . L, for which
they could compute rigorously the asymptotics of the scaling exponents. By extending slightly
their computation, one can verify PACSE both for parameter- and real-space scaling [18].
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4.5. Unimodal maps that are functions of |x|1+ε

The papers [14, 22] consider unimodal maps that are functions of |x|1+ε and construct fixed
points of renormalization. They present calculations of some fixed points and their scaling
exponents for ε small. By extending their calculations slightly, one can verify [18] the first
statement of PACSE up to leading order in ε. Indeed, some version of PACSE for parameter-
space scaling is mentioned in passing in [14, p 276].

5. Conclusions

We established numerically some approximate relations between several scaling exponents of
different RGs.

The existence of this regularity seems to be good evidence that there is a global RG
applicable for maps of all rotations (or all kneading sequences). It seems possible that PACSE
can be considered evidence for certain dynamical behaviours of these global renormalization
operators. The paper [18] suggests that PACSE is evidence for the existence of a horseshoe
with one-dimensional unstable manifolds which, furthermore, satisfy some transversality
conditions.

Global renormalizations have been proposed for Siegel discs [23–26], unimodal maps
[27, 28], critical circle maps [29, 30]. We hope that this paper can serve as a stimulus for the
development of these theories.
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[3] Shenker S J 1982 Scaling behavior in a map of a circle onto itself: empirical results Physca D 5 405–11
[4] Ostlund S, Rand D, Sethna J and Siggia E D 1983 Universal properties of the transition from quasiperiodicity

to chaos in dissipative systems Physca D 8 303–42
[5] Feigenbaum M J, Kadanoff L P and Shenker S J 1982 Quasiperiodicity in dissipative systems: a renormalization

group analysis Physca D 5 370–86
[6] MacKay R S 1983 A renormalisation approach to invariant circles in area-preserving maps Physca D 7 283–300
[7] Khinchin A Ya 1997 Continued Fractions (New York: Dover)
[8] de la Llave R and Petrov N P 2002 Regularity of conjugacies between critical circle maps: an experimental

study Exp. Math. 11 219–41
[9] de la Llave R and Olvera A 2006 The obstruction criterion for non-existence of invariant circles and

renormalization Nonlinearity 19 1907–37
[10] Shenker S J and Kadanoff L P 1982 Critical behavior of a KAM surface: I. Empirical results J. Stat. Phys.

27 631–56
[11] Stirnemann A 1993 Renormalization for golden circles Commun. Math. Phys. 152 369–431
[12] Stirnemann A 1997 Towards an existence proof of MacKay’s fixed point Commun. Math. Phys. 188 723–35
[13] Metropolis N, Stein M L and Stein P R 1973 On finite limit sets for transformations on the unit interval J. Comb.

Theory Ser. A 15 25–44
[14] Derrida B, Gervois A and Pomeau Y 1979 Universal metric properties of bifurcations of endomorphisms

J. Phys. A: Math. Gen. 12 269–96
[15] Milnor J and Thurston W 1988 On iterated maps of the interval Dynamical Systems (College Park, MD, 1986–87)

(Lecture Notes in Mathematics vol 1342) (Berlin: Springer) pp 465–563
[16] Manton N S and Nauenberg M 1983 Universal scaling behaviour for iterated maps in the complex plane

Commun. Math. Phys. 89 555–70

http://dx.doi.org/10.1088/0951-7715/19/8/008
http://dx.doi.org/10.1007/BF01013439
http://dx.doi.org/10.1007/BF02098303
http://dx.doi.org/10.1007/s002200050185
http://dx.doi.org/10.1016/0097-3165(73)90033-2
http://dx.doi.org/10.1088/0305-4470/12/3/004
http://dx.doi.org/10.1007/BF01214743


F434 Fast Track Communication

[17] Widom M 1983 Renormalization group analysis of quasiperiodicity in analytic maps Commun. Math.
Phys. 92 121–36

[18] de la Llave R, Olvera A and Petrov N P in preparation
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